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We present a projection method for the numerical solution of the
incompressible Navier-Stokes equations in an arbitrary domain that is
second-order accurate in both space and time. The original projection
method was developed by Chorin, in which an intermediate velocity
field is cafculated from the momentum equations which is then
projected onto the space of divergence-free vector fields. Our method
is based on the projection method developed by Bell and co-workers
which is designed for problems in regular domains. We use the con-
tinuity equation to derive a pressure equation to cornpute the gradient
part of the vector field. An integral form of the continuity equation is
used to give us a natural way to define the discrete divergence operator
for cells near the boundary which ensures the diagonal dominance of
the resulting pressure equation. We then use the restarted version of
the GMRES method to solve the pressure equation.  © 1994 Acsdemic
Press, Inc.

1. INTRODUCTION

In many of the applications in engineering and mathe-
matical modelling in medicine, it is often necessary to solve
the Navier-Stokes equations in Irregular domains. In this
paper we present a second-order projection method for the
incompressible Navier-Stokes equations in domains with
irregular boundaries. The main ideas are adapted from the
method developed by Bell, Colella, and Glaz [ 2] that solves
incompressible flow problems in regular domains. The
Navier-Stokes equations for incompressible flows are

g l
~u+(u-V)u= —Vp+ —Adu,

or Re (1)

(2)
on a2 domain £2, where u is the velocity field, p is the
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pressure, and Re is the Reynolds number. Typical initial and
boundary conditions for Egs. {1} and (2) include specifying
an initial velocity field u throughout the domain £2 and a
boundary condition for u on the boundary éQ2. No condi-
tion on p is required.

The projection method was first developed by Cheoerin
[3]. It computes an intermediate vector field by ignoring
the incompressibility condition and then projects the vector
field onto a divergence-free field to obtain the velocity field.
The method is based on the idea of Hodge decomposition
[ 12, 3]. The criginal method was shown to be first-order
accurate in time [4]. Peskin [ 7] adapted Chorin’s method
to irregular domains with moving, curved boundaries by
embedding the physical domain into a larger regular
domain and then solving the equations over the entire
regular domain, including points outside the physical
domain, with the physical boundaries replaced by some
artificial forces. In a recent paper, Anjivel [9] used a
different approach to adapt Chorin’s method to irregular
domains, in which only the physical domains were dis-
cretized and complicated finite difference approximations
were used to approximate the Navier-Stokes equations
near the boundaries. Here we use an approach that is
similar to Anjivel’s to develop a second-order projection
method for irregular domains.

We start with a general description of the second-order
projection method. If we rewrite Eqgs. (1) and {2) as

K
~E+Vp=Ldu——(u-V)u,

dt Re (3)

4)

then by the Hodge decomposition, du/ét is the divergence-
free part of the right-hand side of Eq. (3). We then discretize
Eqgs. {3) and (4) in time, defining w” to be the velocity field
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at t=n 4t and p”*'” to be the pressure at ¢ = (n + 1) 41, to
obtain

un+l ]

—Uu
+ v no 142
At 7

1 un+l+un e
-2 (Tt )

V.urtl=0. {6)
Given u”, we would like to find u”*' and p”* '/ that satisfy
Egs. (5) and (6). For computational efficiency, we use the
foilowing iterative scheme (sce [2] for the reason why).
Assume that we have »” and that we denote by p"*'/** the
kth approximation to p"*'2 We first compute u** by
solving the following equation:

.k i

u u
_,,_._+V n+ 12k
At P

b (7)

1 (u*"‘+u"
Re

)L vy

Once u** is computed, we decompose the right-hand side
of Eq. (7) into

m+ 1A+ o

u u

V n+1/2,k+1
TR
1 *.5 n
=R—GA(“—2i“—)[(u-V)u]"“ﬂ, (8)

where u”+ ' is divergence-free. We then use p"*+ 2%+ o
repeat the process until we achieve the convergence
pn+ 12.k+1 _’pn+ 12 and "+ 4%+ 5 9"+ The initial Zuess
of p" * % can be taken as p” "?forn> | or zero forn=1.
It has been shown in practice (see [2]} that for small A¢
iteration is not needed beyond the first time step. A simple
reason for this is that we do not have a good approximation
for p at the first time step.

2. DISCRETIZATION OF DOMAIN

Assume that we have a domain £2. We will assume that
has piecewise linear boundaries. Any other domain can be
approximated by such a domain. We then cover domain €
by a rectangle R with a Cartesian grid of mesh size 4. For
simplicity, we assume the same mesh size in both directions.
Extension to different mesh sizes is straightforward. We use
a staggered grid. We define the x-component of velocity, u,
at the middle of right and left edges of each cell, the
y-component of velocity, v, at the middle of top and bottom
edges of each cell, and the pressure p at cell centers. So we
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have three sets of grid lines and grid points corresponding to
u, v, and p, respectively. We also define the intersections of
u-grid lines and v-grid lines with the boundaries of 2 to be
u-boundary points and v-boundary points, respectively. As
will be seen later, there is no need to define the p-boundary
points. All the - and v-grid points that are interior to
domain {2 are marked as inside points. For pressure p, the
mside points are defined as follows: for each p-grid point, if
on the edges of the cell that has it as center there is at least
one inside point of # or », then the p-grid point is marked as
an inside point. It is possible for an inside point of p to be
physically outside of domain €2 (see Fig. 1}. The reason for
this definition of p is that this will give us two neighboring
p-grid points for every inside u- or v-grid point, so that the
appropriate component of Vp can be easily defined (see later
in this section).

Next we discretize the Navier—Stokes equations on ail the
inside grid points. If we denote U = {all inside points of u},
V' = {all inside points of v}, and P = {all inside points of p},
then the x-component of the momentum equation is defined
on {/, the y-component of the momentum equation is on ¥,
and the continuity equation is on P. We first discuss the
evaluation of the terms in the momentum equations. We
use the x-component as an example; the y-component is
essentially the same. We would like to evaluate each term in
the equation

un+;[_ u" +Vﬁpn+|/2
1 W't un
ﬁﬁﬁk(_‘i—)—[zvx(u"n"““, 9)

where 4, is an approximation to the Laplacian, V4 (and V%)
is an approximation to the derivatives in the gradient
operator, [N _(u")]"*'* is an approximation to the
x-component of the nonlinear term. We used u” in N, (u") to
indicate the fact that the nonlinear term is evaluated from
the knowledge of u” only.
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FIG. 1. The definition of grids.
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The operator V4P — U) is defined on every point of U by

(Vip)f-rl/z,j—_“(_’i&j;ﬂ-

Because of our definition of P, if u, ., ;€ U, then we will
have p; | ;e P and p, ;€ P. So V” p is well defined on every
point in U. For A, we use the standard five-point
approximation for interior points, and for points near the
boundary we can use either frst-order or second-order
approximations, depending on whether we can find enough
grid points and boundary points. Take the x derivative,
for example. If a grid point 4 (see Fig.2) has only one
boundary point as its neighbor in x direction, then on the
other side the neighbor will be a grid point B. In this situa-
tion a fourth point D can be found on the side of B away
from A, which can be a grid point (as is the case in Fig. 2)
or & boundary point. We then use those four points to form
a second-order approximation to 8%u/éx>. If both neighbors
are boundary points {grid point E in Fig. 2) we then use the
three points (the two boundary points F, G plus £ itself) to
form a first-order approximation. For approximation of the
nonlinear term, we follow the idea in [2]. Some modifica-
tions have to be made because we use a different grid and
also because of the irregular domain. We define, suppress
the superscript (n+ 3),

Uty fui,y ;—uy
[Nx(“n)]i+1/2,j= +l.§ j( +I;I J)

+ Pivizriz Tl -2

2

% (“H Vo i+172 " Hivipi—p
h b

where u; and v, are velocities at cell centers, and u, , |5 Py
and v, 1 ;4 1,; are velocities at cell corners. Velocities are
evaluated at time 7 = (n + }) 4 using the Taylor series of u”
from both sides. For instance,

n+1/2. 8 — g +—-u +£u ,
ivlfa ez = iz 3 rirzg T i

r_1‘+lf2.R 4t

Hy =Uiv, 2”x,.‘+1/2.;+ 5 Uiy

Qutsidp

InsidJ \

N

FIG. 2. Points used to approximate §%u/8x? for grid points A and E.
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The spatial derivatives are constructed by first forming a
centred difference approximation and then using a limiting
process so that no new maxima or minima are introduced.
For temporal derivatives, we go back to the Navier-Stokes
equations to obtain an approximation for u, by information
at the previous time step (for more details, see {2]). For
points near boundaries we use the known velocity at time
t=(n+3) 41 s0 the time expansion in the Taylor series will
not be needed for those points.

Now we have to eliminate the ambiguities. We use an
upwind-like scheme. For velocities at centers, we define

uk if ul20, ub+ufz20
ue=40  if uL<0, &®>0
u® otherwise.

and similarly for v_,. At the corners, we first look for u% , u”

«2? Toa
or v%,, vf that have the same sign. For instance, say 12 >0
and u, >0, we then define v, =L, orif u? <0and u”, <0

car

we define v, = v} . Once v, is defined, we then define

u? if v,>0
U=l if v,<0
1 B T : .
E(HJ'O + u(‘ﬂ lf UL"O = 0’

similarly when v%,, v} have the same sign. If they both have

the same sign, either can be used. It can be easily verified
that they will vield the same result. If none has the same
sign, then we define

1 B T
ufﬂ";?':i(uro-{_ “co
and
1 L R
Ucu.@i‘ i(vco + Um)'

Since the method is explicit, we require that

u, At v,jz}l)
_— = | =
max ( PRI 1

for stability.
The last step in each iteration is the projection itself, We
warnt to compute u”*! from u* such that

uﬂ"m Vap 1 = fur, v (10)
At :
and
Vourtl=0, (11)
where  f(u*, u") = (1/Re) 4,((u* +u")/2) — [N(u™) ]+,
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To avoid the difficulty of defining the finite difference
approximations to the divergence operator near the
boundary, we use the integral form of Eq. (11),

1
=0 wtl.dr=0, (12}
h cell

where the equation is defined for each and every celil that has
its center as an inside p-point. We use the midpoint rule for
the integration. For cells that are completely inside the
physical domain, we have, for cell {i, j),

1

1
P ce"|.|'drzl?(H£+[’,t2_jh—ui71/2,jh

TU 4 1/2h — Uy 120)

_(Mierp T Hi 12,5 4 Vijr1p~ Vi1
h h

=0 (13)
So Eq.(12) effectively defines a centered difference
approximation to the divergence operator (see, e.g., [11]).
For cells that are only partially inside, we define, e.g., for cell
ABCDE (see Fig. 3},

1 1
-3 w-drx | (ye—Ya)wap—(Xe—Xp) 0ac
i A

+{(¥yp~yclucp—(xg—Xp) Vpp

1
+5(”E+u.4)(yA_yE)

—5 et o=

=0 (14)
where x . y, are x and y coordinates of point 4, and u 45 is
the x-component of velocity at the middle of segment AB,
which is obtained by the interpolation of u, and the other
nearest neighbor, 1n this case the velocity at the inside w-grid
point at the middle of BF; similarly for v .. vg-and u ., are
the velocity components at the grid points at the centers of

1tsid

I3 . \

FIG. 3. The definition of a boundary cell.
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segments BC and CD. Equation (14) could be used to define
approximations to the divergence operator near the
boundary. We should point out that approximations like
{14) are only first order for cells near the boundary. But as
we will see from our test results, this will not affect the
overall accuracy of the scheme.

With those definitions we will not have

(Dh“’ (ﬁ)s:"(“’ Gh¢)v! (15)
where D" and G are discrete approximations to divergence
and gradient operators; (-,-), and (.,-), represent
appropriate inner products on discrete spaces of scalars and
vectors, respectively. But Eq. (15} is viclated near the
boundary only, so that it will not present us with any major
difficulty for the projection (see Chorin [3] and Soloman
and Szymczak [10]).

The other advantage of using the integral form (12)
is that it will guarantee the diagonal dominance of the
resulting pressure equation (17), thus the stability. So we
can avoid the difficulty of choosing appropriate parameters
to ensure the stability of the system as was done in [9].

If we move the terms that involve velocity values on the
boundary which are known in Eq. (14} to the right-hand
side, we then have

Dyt = Flup™h, (16)
where D is the coefficient matrix and u}*' is the known
velocity value on the boundary at time ¢ =(n + 1) 4¢. Next
we use Eqgs, (10) and (16) to eliminate the velocity to form
an equation for the pressure p {for details see Anderson [ 1]
and Tau[117),

Ap=b. (17)
After we solve Eq. (17) for p then we go back to Eq. (10) to
find the divergence-free u” *'. This completes the projection.

3. SOLUTIONS TO THE EQUATIONS AND
THE GMRES METHOD

Because of the irregularity of the domain, both systems of
Egs. (7) and (17) have nonsymmetric coefficient matrices.
We use the restarted version of the generalized minimai
residual method (GMRES(m)) developed by Saad and
Schultz [8] to solve both systems. Equation(7) is a
Heimholtz equation with a negative coefficient — 2Re/4¢
and the resulting linear system is diagonal dominant and
very well conditioned. The GMRES(s») algorithm will con-
verge very fast for this equation. Equation (17) is a five-
point approximation to the Laplace equation for the points
that are not near the boundary (see [1]). For other points
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the equation can be shown to be still diagonal dominant but
barely. The GMRES{m) algorithm converges much slower
for this equation than for Eq. (7) and most of the work for
one iteration step is done to solve this equation. The steps
of the GMRES(m) algorithm are as follows:

1. Start. Choose x, and compute ro=5b— Ax, and
vy ="ro/llrol.-

2. Iterate. Forj=1,2,..,mdo:
hr',jz (Avjs U,-), 1.-_— l, 2, ...,j,

J
6, =Av,— Y h v,

i=1

hj+ 1,i= Hﬁj+l [, and
Uj+l=ﬁj+l/hj+l,r"

3. Form the approximate solution.
Xp=Xo+ V¥, where y, minimizes |[fe, — H,, v/,
yeR",
with S=|roll, H,={h }ms1xm and ¥V, =
(D1, Uay s Up}-

4. Restart.

Compute r,, = b — Ax,,; if satisfied then stop,
else compute xy = x,,, vy =7, /¥, || and go to 2.

For details on the implementation of the algorithm, we
refer our readers to [ 8]. The second step in the algorithm is
the Gram-Schmidt process for finding an /,-orthonormal
basis {v,,v;,..v,} of the Krylov subspace K, =
span{v,, Av,, .., A"~ 'v,;}. In practice we find out that
when GMRES(m) is used to solve the pressure equation
(17}, reorthogonalization has to be used to guarantee the
orthogonality of basis vectors {v,, v, .., v,,}. We use the
Gram-Schmidt process with reorthogonalization described
in [5].

4. NUMERICAL RESULTS

To test our algorithm, we apply it to a domain with one
bifurcation branch (see Fig. 4) which is bounded by a
n x 0.77 rectangle. We solve the following test problem with
known solutions:

u= —cos(x) sin( y) e ~2/%e, v =sin(x) cos( y) e~ 2Re,
1 1.
£=Esin(2x) g~ 4/Re £=§sm(2x) g~ 4/Re

Computations were performed for Reynolds numbers
100, 500, 2000, and 5000, with grid sizes of Ax = 7/2", Ay =
0.7r/2" for n=4, 5, 6, 7. For each grid size the time step is
taken by At =025(4x + Ay). In our solutions to the linear
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0.7x,

FIG. 4. A domain with one bifurcation.

systems, we use the residual r as our computation criterion,
ie., the iteration stops when [ir|, is less than a predeter-
mined small positive number &. Here {|#|, is defined as a
equivalent of L, norm by
1/2
’ij) ,

1

rl =(—

7l Nimém
where N is the total number of points inside the domain. In
all of our computations we set £ =1 x 10 ~*. We should men-
tion that by our construction the residual of the pressure
equation 1s exactly the divergence of the velocity field; 1.e.,
we have

— h h
r,-!j—(Dxu+Dyu),-‘j

for the pressure equation. This guarantees that the L, norm
of the numerical divergence of the resulting velocity field is
bounded by &. The velocity field is computed up till time
T=10.392699 (a maximum of 32 time steps for n=7). The
error of velocity field is measured by

e(n) = max(e(u), e(v)),

where e(r) and e(v) are the maximum errors of w, v
measured against the exact solution, respectively. The rate
of convergence is defined by

lled”

R= 10g2 W

TABLE I
Convergence Results at Time T = 0.392699

Re 16x16 Rate 32x32 Rate 64x64 Rate 128x128

100 3.160E—3
500 336l1E-3
2000 3403E -3
5000 3412E-3

1978 B.O21E—4 2076 1902E—4 2173 4219E-5
1.877 9.086E—4 1990 2.287E—4 2.046 5536E -5
1.863 9353E—4 1964 2.397E—4 1.969 6.120E -5
1.858 9411E —4 1.959 2421E—4 1982 6.128E—5
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FIG. 5. The velocity field for a model of human conducting airways.

The results indicate clearly that we achieved second-order
accuracy. Any deviation from second order is probably due
to the fact that our approximation to the continuity equa-
tion is only first order for cells near the boundary. Two more
things worth noting from the results. One is that, for a fixed
Reynolds number, the convergence rate increases slightly
from coarse grid to fine grid. A possible explanation for this
is that as we refine the grid the number of boundary cells
decreases percentage-wise so the effect of first-order
approximation for the boundary cells becomes less signifi-
cant. The other is that the rate decreases as the Reynolds
number increases. The reason for this is probably that as the
Reynolds number increases, the effect of numerical diffusion
becomes more significant (see Table I).

For our second example, we use the algorithm to com-
pute the steady velocity field of an air flow in human con-
ducting airways. We use a model with two bifurcations
(data from [6]) as shown in Fig. 5. We specify the velocity
boundary conditions to be parabolic at the entrance and
exits, and zero everywhere else. The maximum of the
parabolic profile at the entrance is derived from the peak
volume flow under normal breathing conditions and the
maxima at the exits are adjusted such that the net flow into
the region is zero. The velocity field is displayed in Fig. 5. A
64 x 64 grid is used and a steady state is achieve after 20 time
steps. The Reynolds number of the flow is about 24.
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5. CONCLUSIONS

In this paper we have presented a projection method for
the incompressible Navier-Stokes equations in an arbitrary
domain. Qur numerical example illustrates that the method
is second-order accurate in both time and space. We used
the integral form of the continuity equation to derive a
pressure equation that is always stable. The use of the
integral form gave us a natural way to define the discrete
divergence operator for cells near the boundary so we
avolded the difficulty of choosing the appropriate discrete
divergence operator near the boundary to ensure the
stability of the resulting pressure equation.

One drawback of the method is that when applied to
complicated domains the solution to the pressure equation
converges very slowly. Some preconditioning to the
pressure equation may improve the convergence rate.
Future efforts will be addressed to this issue.
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